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1.0 INThLCLT7 Q
This report describes a new design concept for an ocean

surveillance information fusion system that was developed under
the Navy's Counter Surveillance Assessment Program (CSAP). The

design concept utilizes a remarkably simple and computationally
efficient new deductive algorithm that should permit real time

tactical information fusion either in a wargame environment or in

automated support of shipboard information fusion. The algorithm

can also be applied in the context of an information warfare

decision aid, to assist in evaluating what an opponent could

learn from alternative courses of action that might be selected

for cover and deception tactics, or emission control (EMCON)

alternatives.

The new deductive algorithm achieves its computational

efficiency by means of deductive procedures which closely

parallel the methods used by human intelligence analysts. When

these intelligence methods are formalized for application in a

computer, the resulting system is, of course, far faster and more

accurate than human analysis; and it is also free from the biases
and personal prejudice that is unavoidable in human intelligence

analysis. Consequently in a shipboard tactical environment the
system should substantially speed up the intelligence cycle, and

it should also contribute to greater accuracy in the assessment

of the tactical situation by providing an unbiased second opinion
against which the human analysts could check their own
conclusions. In a wargaming environment, where the system is

used to simulate human deductive processes, it may be necessary
to deliberately degrade the system's performance to match the

more limited computational capacity of human analysts.

In addition to its computational speed, the new deductive

algorithm has another unexpected advantage over the traditional
formal methods of mathematical inference. When the traditional

formal methods are applied in an environment of deliberate
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tactical deception, the calculated conclusions often appear to be

more naive (i.e., more vulnerable to deceptive tactics) than an

experienced intelligence analyst. Because the new algorithm is

based on fundamental principles similar to those used in human

intelligence analysis, it tends to duplicate the well justified

conservatism of an experienced analyst.

These _unique advantages of the present design concept can

be viewed as an unexpected by-product of the design objectives

that were required for the CSAP program. Because of the counter

surveillance goals of the CSAP program, the effort was focused,

not on the general problem of information fusion, but rather on

the assessment of what Soviet ocean surveillance and intelligence

systems might be able to learn from the electronic emissions of

U.S. ships. The initial design effort, therefore, focused on the

formulation of computer algorithms capable of simulating those

human analytical processes that are required in an intelligence

network, in order to integrate the available data into a coherent
situation assessment.

Because the original design objective was simply to

simulate (rather than to improve) the normal human intelligence

processes, the analysis led quite naturally to a design concept

that is quite different than would have resulted from a standard
application of the methods of mathematical inference.

1.1 ADVANTAGES OF NEW ANALYTICAL METHODOLOGY

The main advantages of the new approach relative to the

more conventional mathematical methods can be summarized as

follows:

1. Computational efficiency. The traditional Bayesian

methods of mathematical inference require very large
combinatorial calculations that can make it difficult

or infeasible to solve practical problems on even the

largest computers. Because human intelligence

analysts must, of necessity, work with limited 1
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computational resources, the basic methods they use

for information fusion tend to be far more efficient

in the use of computational resources. When these

common-sense methods are formalized in computer

algorithms, the resulting system is capable of

carrying out the basic information fusion operations

not only very rapidly, but also far more accurately

and comprehensively than is possible for human

analysts. In addition, the compactness and

efficiency of the new algorithm opens the possibility

of automatic information fusion systems that could be

used aboard ships to assist intelligence officers in

providing a more up-to-date situation assessment and

to help in evaluating information warfare

alternatives.

2. Reduced vulnerability to deception. One of the

common problems that is encountered in the

application of the standard methods of mathematical

inference is that they are not designed to deal with

deliberate tactical deception. As a consequence,

they can be unrealistically naive in their

interpretation of the available evidence. Human

intelligence analysts, on the other hand, are aware

of the possibility of deception and tend to be more

conservative in drawing firm conclusions from a

limited amount of evidence. The use of mathematical

algorithms based on human analytical methods makes it

possible to produce conservative results that are

less vulnerable to deception than the standard

methods of mathematical inference.

3. Analytical simplicity. The resulting design concept

has one other unexpected advantage. The mathematical

methodology is analytically very simple and is thus

easy to generalize to incorporate a wide variety of

practical considerations that would be very difficult

to incorporate in the traditional methods of
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mathematical inference. This analytical simplicity

is particularly unexpected because human methods of

deduction seem subjectively to be very ad hoc and

disorganized. Thus, the discovery of a simple

mathematical generalization capable of simulating

these mental processes came as a major surprise. The

basic simplicity of the method reduces the complexity

of the required computer code and should allow much

simpler and more economical information fusion

systems.

1.2 POTENTIAL APPLICATIONS

The basic design concept developed here has a wide variety
of potential applications, both in wargaming and in the

development of tactical decision support systems. Because the

basic concepts are new, we believe that the system should be

developed initially for use in a wargaming environment. This

should provide a relatively low cost environment in which the

system could be tested, evaluated, and modified before attempting

to develop any operational systems.

1. Wargaming applications. In the context of

man/machine tactical wargames, the system could be
used to provide real time automation of the basic

information fusion processes. In this role, it
should greatly reduce the burden of routine analysis

required of human players, and it should provide a

realistic context for assessing the potential

tactical value of such a system in an operational
environment. Such an automated information fusion

capability could also provide the foundation for the
development of "automated players" that could

substitute for the blue and/or orange team in certain

scenarios.

2. Tactical information fusion. Probably the most

obvious and potentially important application of the

design concept would be to provide computerized

4
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assistance in the tactical analysis of real time

sensor data. In this role the system should greatly

speed up the intelligence cycle and could provide a

"second opinion" against which human situation

assessments could be checked.

3. Decision support for information n.WA/ .. An

automatic information fusion system could be used as

an aid in estimating what the opponent might already

know from previous observations, and what he might be

able to learn from new evidence. Thus, such a system

could be used to support a wide variety of

information warfare decisions dealing with issues

such as: cover and deception; emissions control and

ECM; surveillance and reconnaissance; and

intelligence information. Because of the very

critical military importance of such activities, and

the large amount of information required to make good

decisions, computerized assistance in these areas

could be of great importance to the military

commander.

1.3 THE DESIGN CONCEPT

The present design concept for a tactical information

fusion system involves two basic processing systems:

1. An historical correlator

2. A ship identity inference system

The historical correlator is concerned with the time and

space correlations between ship tracks and observed signal

sources. This correlation of apparent signal sources with

historical ship tracks is necessary so that all historical clues

can be collected and organized in such a way that they can be

fully exploited in the evaluation of ship identity. The ship

identity inference system then uses the accumulated clues to
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asscciated with each track.

The new ship identity algorithm involves a logical

extension of the principle of minimum cross-entrcpy. The

algorithm provides a ccmputaticnally feasible method for dealing

with very large and complex problems in mathematical inference.

The development and demcnstration of this algorithm was :ne cf

the majcr achievements of this project, and the practical

feasibility of the present design concept is a direct consequence

of this new analytical method.

During the present contract, a fairly detailed basic design

concept was developed for both components. In addition, a

laboratory prototype of the ship identity inference system was

developed to test and evaluate the performance of the ship

identity algorithm.

Obviously, a considerable amount of additional work will be

recuired to convert the present design concept into a practical

operating system that can be tested and evaluated. However, we

believe the most difficult theoretical problems have already been

solved, so the remainder of the development should involve

relatively little technological risk.

1.4 SUGGESTED DEVELOPMENT PROGRAM

Because a pratical system that could provide efficient

tactical fusion of sensor data with intelligence information

would be of great importance to the Navy, we believe that

development work on the concept should proceed on a priority

basis. On the other hand, because many of the concepts are new,

Lt would be a mistake to try to move toc rapidly toward an

operational system. The required development time cannot be

accelerated beyond certain reasonable limits by increasing the

6



level of effort. What is required is an orderly development

effort by a few well qualified analysts to provide an initial

well structured operating system.

If a decision is made to proceed with the development of

such a tactical information fusion system, we believe the next

step should be to implement the overall concept within the

context of a tactical naval warfare simulation where the

usefulness of the concept can be demonstrated, and where

inevitable weaknesses in the original system design can be

identified and corrected before attempting an operational system.

1.5 ORGANIZATION OF THIS REPORT

This report includes a main paper and two annexes. The

design concept for the historical correlator is developed in

Annex A, and the design concept for the ship identity inference

system is developed in Annex B. The main paper is limited to a

discussion of the broad architectural concepts and the

relationship between the two systems. The remainder of the main

paper includes three sections: a brief review of the background

and research plan; a general discussion of the ocean surveillance

environment and associated analytical problems; and finally, a

discussion of the broad architectural concept for the information

fusion system.
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2.0 BACGROUN AND RESEARCH APPA

Funding for the present stuady was provided by NAVELEX

(under the Navy's Counter Surveillance Analysis Program, CSAP

through the Office of Naval Research. DSA's basic responsibilty

under the contract was to assist NAVELEX in integrating advanced

decision science methodologies into the Counter Surveillance

Analysis Program. In particular, the obtective was to determine

how specific decision science developments which had teen

pioneered by DSA under ONR sponsorship, such as:

1. The Theory of Measures of Effectiveness:

2. Electronic Warfare Decision Aiding; and

3. Computer Simulation of Deductive Logic and Decision

Processes

could be most effectively applied within the context of the

Counter Surveillance Analysis Program iCSAPI.

2.1 THE CSAP PROJECT

Broadly speaking, the Navy's CSAP project was designed tc

achieve three major objectives:

* Identify U.S. Navy vulnerabilities associated w:th

signal emissions.

* Evaluate promising U.S. cover and deception options

in terms of both tactics and equipment.

0 Identify procedures to effectively exploit weaknesses

and inefficiencies in Soviet C3 systems.

To provide a systematic way of addressing these issues the CSAP

project envisioned the development of a large tactical simulation

in which detailed models of US. emitters and Soviet ocean

surveillance systems would be used to identify U.S.

vulnerabilities, and to evaluate promising cover and deception

options.

9



*rFuts i tn's Frograir, nowe,.er, CSAF prc-ect officers

anticipated scme ditfcu.t practical prot.lews in relating

sxmulaticn :es,..ts tc troader CSAP ob:ectives. Although the

simulation could prcvide information concerning signals emitted

and detected, there appeared to be no practical way to relate

these results to the higher level objectives of mission outcome

cr comat effectiveness. Therefore, to assess the practical

significance cf the signal detections, it appeared to be

necessar- to expand the simulation to include human decision

processes, so that the effects of comtat outcomes could be

coserved. But such an introduction of human players into the

simulaticn would inevitatly make the simulation slow, costly, and

nonreproducitle. As a consequence, consideration was being given

tc the possibility of automating human decision processes within

tne simulation.

. :NTIAL STUDY RECOMMENDATIONS

The DSA study effort began with an initial exploratory

ptase whicn was followed ty the design and development effort.

Following the expioratory study DSA made the following general

observations and recommendations:

That the gap between the specific simulation results

and the higher level objectives (mission outcome!

could be most effectively bridged by introducing an

interaediat measure of performance--which could be

related downward to the simulation results, and

upward to the higher level ob3ectives.

2. That the *situation perception* available to the

opposing military commanders could provide such an

interuedjiAt performance measure. (Obviously,

information warfare options that are successful in

providing the commander an accurate situation

assessment, and which can simultaneously deny an

accurate assessment to the opponent, are generally

more likely to lead to favorable mission outcomes).
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3. That to efficiently use such a criterion it would be

necessary to simulate the way multiple signal clues

and intelligence sources can be combined by

intelligence analysts to provide an overall situation

assessment.

4. That such a capability to simulate human deductive

processes would also be required to provide a

computerized foundation for modeling human decision

processes (if it were later decided to proceed with a

full automation of the player decision processes).

5. That the remainder of the DSA study, therefore,

should focus on the development of a conceptual

design for a computerized system capable of

simulating the kinds of deductive loqic normally used

by intelligence officers to convert an ensemble of

clues into a "situation perception.*

These general recommendations (which were presented at the

Phaie I project review in August 1980) were accepted by the

NAVELEX project director, and DSA's remaining effort on the

project was directed as recommended above.

2.3 THE RESEARCH APPROACH

DSA's research plan for the design effort included three

major elements:

1. Development of a benchmark ocean surveillance

scenario.

2. Theoretical analysis of key problems in integrating

sensor evidence into a situation assessment.

3. Development of a conceptual design for the

information fusion process.
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The purposes of the benchmark scenario were:

1. To make it easier to relate theoretical issues in

mathematical inference to the practical problems of
naval tactics and intelligence; and

2. To ensure that the resulting design concept would be

compatible both with realistic cover and deception
tactics, and with the practical problems of

integrating multiple information sources within a
realistic ocean surveillance scenario.

The scenario was structured to include most of the major
types of information sources and deductive logic that would be

encountered in an ocean surveillance system. Because the

scenario was not designed as a final product for the study, it is

not included in this report. However, the scenario proved to be
extremely important in focusing theoretical attention on the

problems of making valid deductive inferences in the context of

deceptive tactics.

Whereas our initial theoretical analysis had focused

primarily on the problems of computational feasibility, the

emphasis of the scenario on tactics and deception raised very
serious issues concerning the practical validity and usefulness

of Bayesian methods in such a context. This in turn led to the

consideration of more conservative methods of inference that

promised to be less vulnerable to deception.
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3. 0 OPERATING Q LXT[OR INFORMATION FUSIQ SMSTEM

Ocean surveillance information fusion is concerned
primarily with the integration of multisensor information into an

overall situation perception. The integration of multisensor
information, as it is accomplished by human intelligence

analysts, involves a deductive process in which a series of clues
are combined to provide an overall interpretation of the

situation.

Before discussing the deductive methods themselves it may

be helpful to review some of the types of clues that typically
will need to be processed within an ocean surveillance

intelligence network. To illustrate the problem, we will
consider a hypothetical series of observations such as might need

to be processed by a Soviet ocean surveillance system in a
limited war scenario.

* Following notification by intelligence sources that a

U.S. Task Force is underway, satellite reconnaissance

observations are received that show a group of ships

in a configuration as illustrated in Fig. 3-1a. This
satellite observation (which was made at 0400)

arrives at the processing center at 0600. From a
theoretical perspective, the significant clues in

this observation include not only the data on ship

location, but also clues concerning the probable size

of the ship (or ships) at each location as suggested

by the size of blobs.

* At 0800 a Bear D reports a detection of an SPS-52 but

(to minimize the risk of being attacked) it avoids

moving close enough to sight the ships. Also at
0800, a picket submarine reports sighting a specific
U.S. destroyer. Fig. 3-lb illustrates how this 0800

information might look when plotted on the same

coordinates as were used in Fig. 3-la . Notice that

13
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Figure 3-1a. Satellite Observation at 0400 (Received For
Processing at 0600). Scale in nautical miles
on an arbitrary grid.
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Figure 3-lb. Reports at 0800 Plotted on Same Arbitrary
Coordinate Grid
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the new information needs to be correlated with the

previous satellite observation to provide much useful

information.

* Subsequently, a report from an Elint satellite is

received indicating six SPS-10s radiating near the

location of the satellite observation. This confirms

the existence of a U.S. Task Force in the area.

0 At 1000 a second satellite report is received based

on observations taken at 0800. Fig. 3-2a illustrates

the type of information that might be received.

Notice the ships seem to be moving to the northwest,

but the configuration is not exactly the same,

raising some ambiguity concerning the actual
correspondence of these ships to those observed

previously. By 1100 an Elint satellite report is

received which indicates that six SPS-10s and five

SPS-40s were radiating in the area at 0900. At 1100

another Bear D report is received indicating an

SPS-48 radiating at 1000, at the bearing shown in

Fig. 3-2b.

As this type of information accumulates, intelligence

analysts try to integrate the various clues with intelligence

estimates concerning the ships in the area and the analysts' a

priori knowledge of the electronic equipment on various U.S.

ships. Their goal is to develop an assessment of the situation

in terms of the actual ships (and ship types) involved and the

tactical deployment of the ships. Our design objective therefore

is to develop computer algorithms that can be used to simulate

the mental processes involved in developing such a situation

assessment.

3.1 SIMULATION OF INTELLIGENCE PROCESSES

Our objective in the present project was to develop a

conceptual design for computer simulation of these mental

I
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Figure 3-2a. Satellite Observation at 0800 (Received For
Processing at 1000). Displayed on same
coordinate grid as Fig. 1.
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Figure 3-2b. Bear D Observation at 1000 (Received at 1100)
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processes which could be incorporated as a part of an existing

simulation of the physical processes.

Figure 3-3 illustrates the basic design approach for adding

such intelligence processes to an existing ocean surveillance

simulation. The lower line in the figure illustrates a standard

simulation of the basic physical processes. In such a

simulation, the physical status information is updated by a

sequence of "events" as the simulation proceeds. In effect, the

events operate on an "initial situation" to generate a "new

situation." In order to add mental processes to such a

simulation, we need to introduce some new types of events (which

we will call "information processing" events) to simulate the

mental processes. These "information processing" events are

generated whenever the physical simulation provides new sensor

information or communication messages which can affect the

situation perception. The upper part of the figure shows that

these mental events operate on the mental "situation perception"

in much the same way that the physical events operate on the

actual physical situation.

The information represented in the "situation perception"

is typically very similar to the information represented in the
physical status arrays, except that it tends to be incomplete and

inaccurate. The actual quality of information in the situation
perception will, of course, depend not only on the adequacy of

the sensor data and intelligence information that is provided,

but also on the information processing capabilities that are

provided to integrate new information into an existing situation

perception.

Such a simulation of intelligence processes, in principle,
can operate with any desired number of independent "situation

perceptions." For example, there could be a separate "situation

perception" for each ship or for each command center--or in a

I
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simpler simulation there might be only two "situation

perceptions," one for the blue forces and one for the red forces.

Although the simulation of mental processes can be treated,

in theory, much like the simulation of-physical processes, in

practice it is usually much more difficult, because the mental

processes are not as well understood and they do not obey simple

physical laws. Because the actual mental processes are not well

understood, it is necessary in practice to replace the actual

mental processes by a computerized procedure that is capable of

performing the same basic functions, but is sufficiently well

structured that it can be defined within a computer program. The

development of such a simplified representation of the mental

processes is the most critical step in the development of a

satisfactory mental simulation.

3.2 INFORMATION PROCESSING FUNCTIONS TO BE SIMULATED

The first step in developing such a representation is to

understand in some depth the actual functions that are to be

simulated. The real purpose of an ocean surveillance system is

to provide an up-to-date understanding of the tactical situation,

including the location and identity of all relevant ships in the

area. The end product of the information processing procedure

should, therefore, provide information analogous to what is
contained in a war room situation map. Operationally, this is
accomplished by a variety of high level deductive processes

through which the totality of clues are combined to provide an

overall situation assessment that is as accurate and up-to-date

as possible.

jTo accomplish this objective within a computerized system

we will need to identify and simulate these higher level
information processing steps that are used to integrate the lower

level data into a comprehensive situation perception. Whereas

the traditional signal processing activities tend to be concerned

with the analysis of individual signals, the higher level

1
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processing operations are concerned primarily with association

processes involving multiple signals.

Table 3-1 illustrates the relationship between the

traditional signal processing functions and the higher level

information processing functions. The upper part of the table

lists some of the standard signal processing functions. Such

basic signal processing functions are usually included as a part

of the physical simulation in a computer wargame, so for our

present analysis we will assume that these functions exist, and

that they can be used to provide required input data for the

higher level information vrocessing functions.

The lower portion of the table lists some of the major

information association processes that are required to convert

the lower level signals into higher level situation perception.

These are the basic deductive processes that are addressed in the

present design concept.

3.3 OTHER COMPLEXITIES OF OCEAN SURVEILLANCE INTELLIGENCE

The actual intelligence processes involve some additional
complications which are not reflected in Table 3-1.

First, the information processing is accomplished in a

distributed command and control system. Much of the input data

available at each location consists of information that has been

processed (at least in part) at some other location, and this

opens the possibility of receiving the ca=1 basic information in

different but redundant forms from different locations. The

distributed processing environment also introduces communication

delays within the processing operation.

Although this distributed network has very important

practical effects on system performance, it was decided to

postpone this complication until after a basic system design had

been developed. The present design concept, therefore, has been

2
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TABLE 3-

RELATIONSHIP BETWEEN BASIC SIGNAL PROCESSING ACTIVITIES
AND M:GHER LEVEL ASSOCIATION PROCESSES

A. BASIC SI3NAL PROCESSING ACTIVITIES FOR INDIVIDUAL SIGNALS

Signal search (ESM and radar)

Signa detection (including detection of radar return)

Signal analysis (develops signal attributes

-- frequency, repetition rate, pulse width, modulation

form, azimuth, etc.)

Signal classification (emitter type, familiar or new,

identification if possible)

Signal tracking (updates azimuth, range, etc.)

B. HIGHER LEVEL SIGNAL ASSOCIATION PROCESSES INVOLVING

MULTIPLE SIGNALS

Sig.nal correlation (correlates multiple intercepts of

same emitter)

Localization correlation (e.g., direction finding,

triangulation, or signal time of arrival differences)

Recognition, localization, and tracking of platform sets

Association of new emitters with known platform or

platform sets

Decomposition of general platform sets into subsets or

individual ships

Accumulation of historical slgnal clues for each

piatform set

Assessment of type, number, and identification of ships

that can explain emissions for each platform set

Cross-correlation of evidence from all platform sets

to provide an integrated situation assessment

21



developed as if all of the processing were to take place within a

single information prccessinq center. Nevertheless, the system

includes a capability to deal both with delayed information and

with partially processed data. The system design, therefore, can

be interpreted either as one processing center within an overall

network, or as a single unified processing center. This approach

should make it possible to extend the basic design concept to

represent an overall intelligence network simply by adding the

communication links, and by defining specific processing

responsibilities for each specialized processing center.

A second complication involved in a real intelligence

system arises because the intelligence functions go well beyond

the specific deductive functions shown in Table 3-1, to provide a

tactical interpretaion of the situation. For example, in a

sitcation where the concrete evidence indicates 2n1. the presence

of a missile cruiser, an intelligence analyst is likely to

conjecture the presence of destroyers and perhaps other typical

elements of a naval task force. The intelligence analyst,

however, will make a sharp distinction between what he *knows"

(for example, that an emitter unique to a particular cruiser has

been observed) and what he "thinks" (for example, that cruisers

almost always are accompanied by destroyers, and are often

deployed with aircraft carriers). This distinction between what

he "knowsw and what he "thinks" is useful both in communicating

his knowledge and in interpreting new evidence.

The present system design effort has focused primarily on

the development of information corresponding to what the

intelligence analyst would say he "knows." The extension of the

deductive process to draw conclusions concerning higher leve±

tactical interpretations of the situation is a logical next step,

which would require a new conceptual design effort. The

information processing functions shown in Table 3-1 are focused
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primarily on relatively concrete interpretations of the data,

they are not concerned with the higher level interpretations of

the tactical situation.
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4.0 OVERVIEW,.

The first step in the development of algorithms that can

simulate human analytical processes is to develop an accurate

functional understanding of the mental processes that are to be

simulated. Our analysis of the analytical processes required to

maintain an accurate situation assessment showed that process is

quite different than is commonly believed. The following sections

discuss some of the major findings that emerged as a result of

our critical review of these analytical processes.

4.1 THE ESSENTIAL ROLE OF HISTORICAL TIME

It is widely believed that people can update their

understanding of the current situation directly, simply by

correcting it to take into account new information. However,

when we tried to develop system designs based on this simple

intuitive concept we found it was impossible to develop a

logically consistent system. In order to provide satisfactory

system performance we found it was essentia to do much of the

analysis within the context of "historical time." A little

reflection on the functional role of a "situation perception" in

a C2 system shows why this is necessary.

The "situation perception" required by any C 2 system is

action oriented--that is, its function is to support practical

decisions. Since decisions can only influence the future, the

situation perception is pertinent only insofar as it provides a

basis for projecting future outcomes. On the other hand, because

of inevitable time delays in the transmission and analysis of

sensor data, the available situation perception is necessarily

based on information that was collected in the past. The moving

line that divides the past from the future, therefore, plays a

very important role in the deductive processes of any C2 system.

Although the goal of the system is to provide the best

possible understanding of the present situation, this

2
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understanding is ij ay based on an analysis or

interpretation of R events. The C2 system, therefore, is

continually involved in the refinement of its ij.jwjt/1Qn of

events in the recent past. As new evidence concerning past

events becomes available, it can sometimes require major

reinterpretations of the earlier events.

Figure 4-1 illustrates this general concept with a single

simplified example. The figure plots historical time from left

to right and shows a boundary "now" which separates the past from

the future. All available information is derived from events

that happened in the past, whereas decisions can only influence

the future. In order to develop an accurate assessment of the
present situation, and to project possible future outcomes. it is

necessary to develop a satisfactory interpretation of events that

happened in the past.

Because of the unavoidable limitations of a two-dimensional

figure, the plot in Fig. 4-1 shows ship positions plotted

one-dimensionally, on the vertical axis. At the time

illustrated, three sets of ship tracks (A, D, and E) appear to be
of current interest. However, the identity of the ships

associated with these tracks depends on historical information.

The upper track which was most recently radiating an SPS-10 was

previously observed radiating an SPS-43. Thus it seems

reasonable to conclude that the ship or ships associated with

this track are equipped with both an SPS-43 and an SPS-10.

Tracks D and E, on the other hand, pose a more difficult

problem. Depending on how we interpret the ambiguous
intersection of the tracks we can reach quite different

conclusions. If we were to assume a simple crossing of the

tracks then we might conclude: that track E includes an SPS-43

and an SPS-52; and that track D includes an SPS-48. On the other

hand, if we consider the possibility of a deceptive maneuver it

is possible that track E and track C are associated with the same

26



E

.-4

0

0

0

-4

A|

7fa

=w

4.1
La

-4

ALL

27



ships and that tracks D and B contain the same ships. In this

case we could conclude: that track E includes both an SPS-43 and

an SPS-48; and that track D includes both an SPS-48 and an

SPS-52. Thus, the appropriate interpretation of the current

situation depends critically on the in.rjA. iQD of a past

event. If new information were to become available which changed

th? i!terpretation of this historical event, it would necessarily

change our interpretation of the present situation.

In terms of the design of a deductive system this

observation is very important, because it means that the

deductive system must maintain records of historical events which

might need to be reinterpreted. If such records are not

maintained there is no way that new information concerning those

events can be utilized. From these observations it is apparent

that a deductive system that directly updates the situation

perception cannot operate satisfactorily. Instead the system

must operate in terms of an interpretation of past events.

The basic operation of the system, therefore, must be

concerned with the continuing refinement of an interpretation of

recent past events, and with the updating of this historical

interpretation to include more recent events as they occur. As

events recede into the past, they become progressively less

pertinent to current activities. They are less likely to be

updated by new information, and they are less likely to be

pertinent to the projection of future outcomes. Thus the

interpretation of the older historical events can generally be

relegated to a long-term memory archive.

Figure 4-2 illustrates the functional differences between

the two methods of situation update. The upper diagram

illustrates the approach which directly updates the situation

perception. This approach precludes any reinterpretation of

historical events and thus tends to "lock in" erroneous

conclusions. The lower diagram illustrates the present design
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concept in which historical events are available for

reinterpretation as new information becomes available.

This analytical approach breaks the deductive process
naturally into two components. An historical correlator which is
responsible for maintaining and updating the historical

interpretation, and a second component that can be utilized at
any time to produce an up-to-date situation assessment. In the

present system design this second component is identified as a

Ship Identity Inference System because one of its most
significant functions concerns the evaluation of ship identity.

4.2 SEPARATION OF TRACKING AND IDENTIFICATION FUNCTIONS

A second important finding of our critical review of the

human analytical processes concerns the possibility of achieving
a logical separation of the tracking and identification

functions. As Fig. 4-1 illustrates, the clues that are pertinent
to ship identification are typically accumulated over a period of
time. In order to make the best possible evaluation of ship

identity we need to take into account a.l of the available clues.
Moreover, new information concerning old events can produce

important changes in the way we associate identification "clues"
with tracks.

This suggests that the analysis of ship identity can be

logically separated from the processes involved in the
correlation of clues with tracks. In the present system design,
the historical correlator carries out all of the historical

tracking and correlation analysis that is required to recognize
ship tracks, to project ship tracks into the future, and to
decide which identification "clues" are associated with which

tracks. The ship identification inference system processes the

accumulated identification clues for each track to develop a

logically consistent estimate of ship identity.
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The two systems are joined by a data interface which

tabluates all of the "clues" associated with each track and

provides, for each clue, an estimate of the probability that the

clue is actually associated with the specific track.

The discovery that the deductive processes could be

separated in this way into two relatively simple processors

proved it to be a critical step in the development of a practical

methodology. The basic division of reponsibility between the two

processors is summarized in the table below:

1. The Historical Correlator:

* Associates signals with emitters

* Recognizes, localizes, and tracks platform sets

Correlates signals with platform sets

* Accumulates historical clues for each platform

set

2. The Ship Identity Inference System:

* Determines combinations of hulls required to
"explain" emissions from each platform set

Combines clues from all platform sets to

provide an integrated situation assessment

4.3 IMPACT OF TACTICS AND DECEPTION

A third important conclusion derived from our review of the

human analytical processes concerns the fundamental importance of

tactics and deception in the choice of an appropriate deductive

logic. Most scientific applications of mathematical inference

are concerned with situations in which the a priori probability

of alternatives can be objectively evaluated. This is definitely

n=t the case when one faces an active opponent who can select

tactics from an astronomical set of possibilities. This

observation, which is of fundamental importance in the design of

the information fusion system, is worth considering in some
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detail since the problem is rarely, if ever, addressed in text

books dealing with the problems of mathematical inference.

4.3.1 The Effect of Tactical Correl t ons

Although any problem in mathematical inference can, in
theory, be viewed as a problem in Bayesian inference, the

tremendous variety of possible tactics (combined with the

deliberate use of deceptive tactics) makes it totally infeasible

to provide the a priori probabilities that are required for

formal Bayesian inference.

To illustrate this point, consider the problem of ship

identification in the context of deceptive maneuvers and

deceptive electronic warfare tactics. Because ship maneuvers and
electronic emissions are likely to be deliberately coordinated
with deceptive intent, one cannot subdivide the problem into

independent problems dealing with individual ships. Moreover,

one cannot even define standardized a priori probabilities that

any specific set of emitters on a ship will be turned on, since
these probabilities will depend both on the tactic that is being

employed and on the relationship to other ships.

Thus to properly apply Bayesian deductive logic one would

have to supply a priori probabilities for every conceivable

"operational plan"--where an "operational plan" implies a

c l specification of the time-dependent position, and
time-dependent emission patterns for AUl relevant ships! Even if

we were to consider only ship positions and emission patterns at
a given point in time, the number of alternatives would be

astronomical. If there were 100 ships and one million ocean

locations, the total number of position possibilities would be

(1,000,000)100 or 10600. Moreover, for Sh position option (if

we assume about 10 emitters per ship that can be either off or
on) there are (210)100 or about 10300 emission alternatives.

This yields a total of about 10900 possibilities. Obviously,
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when we also consider the time dependence of position and emitter

status, the number of conceivable "operational plans" is so

astronomical that there is no possibility of considering them

individually, even with the largest computer.

4.3.2 Nonuniformity of Tactical Probabilities

Of course, the existence of an astronomical number of

alternatives does not, in itself, make the Bayesian approach

infeasible. In scientific problems (such as the derivation of

the Boltzman distribution in thermodynamics) it has sometimes

been possible to use Bayesian deductive methods (despite an

astronomical number of possible states) by assuming equal a

priori probabilities within well defined classes of system

states. However, in the ocean surveillance problem this

assumption of uniform probabilities is not tenable. Naval

tactics do not involve random motions of ships; ship motion is

always coordinated and deceptive tactics are frequently employed.

If we were to try to proceed with the Bayesian approach we

would probably begin by classifying the totality of conceivable
"operational plans" into a number of specific classes, and for

each subclass we might assign a different a priori probability.

But no matter how detailed we made our set of classifications, we
would always find within each subclass a large number of
unspecified tactical parameters; and we would have to find some

way of assigning a priori probabilities for these unspecified

tactical parameters.

The traditional Bayesian approach of using equal a priori

probabilities is clearly inapplicable because only a tiny

fraction of the "conceivable" operational plans make any tactical

sense. Thus any simplification that treats all alternatives

equally, without regard to their tactical relevance, is likely to

lead us very far astray in our deductive inferences. For example,

other things being equal, those alternatives that give away the

least real information are likely to be the most probable. But

I
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there is no obvious way to classify the "conceivable" plans

either by their tactical relevance, or by the amount of

information they give away. As a practical matter, therefore,

the standard methods of Bayesian inference cannot be correctly

applied, because it is not feasible to provide the required a

priori information.

4.3.3 A Game Theory Analogy

The foregoing issues may be generally suggestive of a game

theory problem in which each side seeks to maximize its own

information while attempting to minimize the information

obtainable by the opponent. Thus it seems reasonable to ask

whether some form of game theory could be applied in the

formulation of the deductive algorithms.

For example, we might assume on a priori grounds that the

opponent's operational plans have been selected to minimize our

knowledge. In a Bayesian formulation this might be equivalent to

assuming a different a priori probability distribution over the

possible "operational plans."

On the other hand real information warfare problems do not

conform accurately to the basic premises of game theory. In

particular, the opponent's real objective is usually unknown, and

it changes predictibly over time. Thus, as a practical matter,

these tactical problems are not manageable using the basic

premises of either game theory or Bayesian inference.

4.3.4 Intelligence Methods as a Design Pattern

Nevertheless, military commanders and intelligence analysts

have developed a variety of heuristic and common-sense deductive

methods, which allow them to address these problems in ways that

seem reasonably satisfactory--except for the limitations of human

intellectual speed, accuracy, processing capacity, and personal

biases.
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If computerized systems are to be effective in supporting

information warfare decision processes it seems likely that they

will need to incorporate some of the same basic simplifications

that are traditionally used by military intelligence analysts.

The present design concept for both systems follows this basic

design philosophy.

4.4 THE DETAILED DESIGN CONCEPTS

Since the two system components, "The Historical

Correlator" and "The Ship Identity Inference System" are entirely

different in design and function, the designs for the two

components are discussed separately in the following annexes.

Annex A describes the design concept for the historical

correlator, and Annex B describes the design concept for the ship

identity inference system.
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ANNEX A

CONCEPTUAL DESIGN FOR THE HISTORICAL CORRELATOR

A.1 DESIGN GOALS AND OBJECTIVES

The overall design concept for computerized fusion of ocean

surveillance data, as outlined in the main paper, includes two

major processing components: a historical correlator and a ship

identity inference system. This annex 2evelops the design

concept of the historical correlator as we anticipate it would be

implemented for the CSAP environment. Functionally, the purpose

of the historical correlator is to generate and maintain ship

tracks and to correlate received signals with the tracks. The

logic required to assess the identity of specific ships is

discussed separately in Annex B which describes the ship identity

inference system.

The output of the historical correlator consists of the

following major elements:

1. A list of current ship tracks with an assessment of

the position, velocity, and the accuracy of these

estimates.

2. For each ship track, a complete tally of all emitters

and other identification clues believed to be

associated with the track, together with an estimate

of the probability of this association.

The tally of identity clues for each track provides the

basic input data that is required by the ship identity inference

system to provide an up-to-date assessment of ship identity.

Within existing intelligence systems most of the deductive

processes outlined above are accomplished by human analysts

working at different locations in a command and control network.

Because of time delays in both analysis and communication, theI



information that is available at any given time is different in

the different processing centers; so to that extent, each

individual center must operate with its own individual assessment

of the situation. Obviously, a satisfactory model of such a

network must take into account the time delays, the inaccuracies,

and the loss of information that occurs within such a distributed

system.

The design of a computerized simulation of the deductive

processes in such a large distributed system is a substantial

effort. Therefore, although the ultimate objective of the

present design effort was to produce a system capable of

simulating a distributed system such as the Soviet ocean

surveillance system, our development strategy was to focus first

on the design of a basic system that could model the generic

deductive processes as they might occur within a single

processing center.

Such a system could then be used either to model an

individual processing center, or to model the operation of an
idealized or unified surveillance system--as it might perform if

it were not subject to the processing delays and communication

limitations of the actual network. Once this basic deductive

system is functioning, it should be a fairly straightforward step

to link a number of such processing elements together via a

communication net to provide a more realistic model of an actual

surveillance network. This paper, therefore, is concerned with

the design of a basic deductive system that could model a generic

information processing center.

The design of this basic system can also be viewed as a

two-step process. The first step is concerned with the

development of a basic analytical system that is capable of

duplicating the essential deductive processes without regard for

the time de lays and logical errors that are inevitable in human

mental processes. After this basic system has been designed, the
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second step is to assess the basic system's performance and to

determine where its performance needs to be improved or degraded

to provide a satisfactory simulation of actual intelligence

processes. The specific design concept that is developed in this

paper, therefore, is concerned with a generic representation of

the analytical capabilities required for processing ocean

surveillance data, without regard for the time delays and human

inaccuracies that might be required to model the total network,

or the quantitative performance of any specific processing

center.

A.2 GENERAL OPERATING CEPT

The information or "situation perception" required by any

C2 system must be action oriented. That is, its purpose is to

support practical decisions. Since decisions can only influence

the future, the situation perception is pertinent only insofar as

it provides a basis for projecting future outcomes. On the other

hand, the situation perception is necessarily based on

information that was collected in the past. The moving line that

divides the past from the future, therefore, plays a very

important role in the deductive processes of any C2 system.

,2
The C system is continually involved in the refinement of

its interpretation of events in the recent past. Moreover,

because of time delays in communication, newly received

information may provide new evidence that is pertinent to an

earlier time--and this "new" evidence must be incorporated to

update the interpretation of events which occurred at the earlier

historical time.

The general operation of the deductive system, therefore,

is concerned with the continuing refinement of an interpretation

of recent past events; and with the updating of this historical

understanding to include more recent events as they occur. As

events recede into the past, they become progressively less

pertinent to current activities. They are less likely to be
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updated by new information, and they are less likely to be

pertinent to the projection of future outcomes. Thus, the older

historical events can generally be relegated to a long-term

memory archive.

The present system design is concerned with the updating of

an interpretation of recent historical events. Any time a

decision is needed, this interpretation of recent history can be

used either to project an assessment of the current situation

(situation perception) or to project possible future outcomes for

alternative courses of action.

At all times, the system maintains a store of "knowledge,"

which reflects its interpretation of recent history. As new

information becomes available, it is incorporated to refine,

revise, and update this store of historical knowledge. The

design for the deductive system, therefore, provides a data

structure for representing the pertinent store of knowledge; and

it provides formal procedures for updating the knowledge as new

information becomes available. Most of this annex is concerned

with the design of an approach for representing historical

knowledge, and for updating that knowledge as new information

becomes available.

A.3 GENERAL CONCEPTS FOR REPRESENTING AND UPDATING HISTORICAL

Computer techniques for representing events are rather well

developed as a result of experience with a wide variety of

computer simulations. In an event-sequenced simulation, the

state of the simulation at any time is stored in a "status

information" file which contains the essential data concerning

the location and current activity of all objects within the

simulation. Any changes in this status information which take

place during the simulation are characterized as "events."

Within the simulation specific "event processors" are provided

which calculate the outcome of interactions between objects in

the simulation and accomplish the necessary changes in the status

40



information. Such a simulation can, therefore, be viewed as a

time sequence of historical states for (each object in the

simulation) in which the states are linked by the historical

events that are associated with the change of state.

The present design uses the same basic concept to represent

historical knowledge. The historical knowledge concerning each

object (as it is interpreted within the deductive process) is

represented by a time sequence of historical states that are

linked by historical events. As the deductive process proceeds,

the interpretation of any specific historical occurrence can

change, and appropriate changes must then be made in the chain of

"historical states" and "historical events" that represent that
particular segment of history.

The deductive process itself proceeds much like an

event-sequenced simulation. As new information arrives from

sensors or communication links, the information triggers a
sequence of deductive processing events which produce changes in

the "knowledge" base. Specifically, these "deductive eventsm

produce changes in the interpretation and representation of
historical events. Thus, in discussing the simulation, it is
necessary to distinguish between the deductive events which take

place in real time in the simulation and the historical events as
they are interpreted and updated within the simulation. For
simplicity, we will usually use the word "event" to refer to real
time events such as sensor events, communication events, and

deductive events that occur in real time in the simulation. The
interpretation of history (or historical knowledge) that is
updated will be referred to either as an "historical event" or an

"historical state."

A.4 ENTITIES REPRESENTED IN HISTORICAL KNOWLEDGE
Before considering a specific structure for representing

historical knowledge, it is appropriate to ask what types of

entities will need to be represented within such a deductive
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interpretaticn of history. From the point of view of the command

and control system, the primary concern is to have accurate

information on the location and activities of potentially hostile

naval forces. As a practical matter, however, this means that

the system will need to consider in its deductive processes all

ships that potentially could be confused with such naval forces.

Most, if not all, of such information that is obtained by a

C 2 system is derived ultimately from sensor data. The sensor may

be a radar, a passive electronic sensor, an electronic

intelligence intercept system, or a human agent whose eyes or

ears serve as the sensor. To identify the kinds of entities

required within the simulation, it is useful to follow a typical

chain of logic that leads from the sensor data to an estimate of

ship activity, position, and identity.

A typical chain of logic involves the following sequence of

objects:

Sensor

Signal

Emitter

Platform

Ship

The actual chain of logic is roughly as follows: a "sensor"

(which can be either active or passive) receives a "signal" that

seems potentially significant. This leads to a c that

some kind of "emitter" is present. The emitter could be a radio

transmitter, an active radar, the reflecting hull of a ship that

returns a radar echo, or a warm hull that is detected by an

infrared sensor. The nature of the received signal provides

evidence concerning the type of emitter and the characteristics

of the emitter. It also provides some evidence concerning the

location of the emitter--but the evidence is likely to be

incomplete and subject to some probable error. If multiple

signals can be combined in the deductive process, the error and

uncertainty in the localization of the emitter can be reduced.
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For any given localization of observed "emitters," the next

logical conjecture is that the emitters are associated with

"platforms." Typically, the platforms will be ships, submarines,

or aircraft. In some cases, it may not be clear whether two

emitters are on the same platform or on different platforms.
Where one or more emitters are observed, one can be reasonably

sure that there are one or more platforms, but often one cannot
be sure of the number of platforms involved. Thus, the

observation of emitters will generally lead to a conjecture about

the presence of a "platform set," in which the actual number of

platforms may be uncertain.

Finally, as a result of a priori knowledge concerning the

electronic order of battle for the ships of interest and prior
knowledge about the probable location of such ships, it may then

be possible to draw conclusions or inferences about the identity

of specific ships in the platform set by exploiting the

information about the emitters which have been correlated with

the platform set.

Thus, a rather standardized logical chain of deductions

leads from the sensor observations to the conclusions or
inferences about the location of ships. In order to duplicate

this kind of logic within an automated system, it seems clear

that the automated system must be able to deal with the same

basic classes of entities.

The design for the deductive system, therefore, provides

for the following basic kinds of entities which can be included

within any interpretation of history.

1. Sensor. Any sensor system whether active or passive;

electronic, acoustic, or optical (including human

eyes and ears); which intercepts signals emitted by

opposing forces.
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2. Signal. Any signal received by a sensor which

provides information pertinent to the location,

identity, or activity, of a platform. A signal is

typically associated both with a specific emitter and

a specific sensor.

3. Emitter. Any active or passive emitter that produces

signals that can be detected by a sensor.

4. Platform set. A set of one or more platforms which

are conjectured to be associated with a set of

observed emitters.

5. . A ship (military or commercial) of a specific

type and class, identified by a specific name or hull

number. Major properties of specific ships; such as

size, speed, shape, electronic equipment, and

acoustic signatures; can be assumed to be known in

advance and will be utilized to assist in the

deductive processes.

Within a single self-contained deductive system, the

deductive process would probably always follow the same basic

logical sequence from sensor to ship. However, in a distributed
system a significant portion of the information available at any

processing center is information that was collected and analyzed

at another location. This information can enter such a system

via communication links, and such communicated information, also,

can deal with any of the entity types. It can introduce new

information about signals, emitters, platform sets, ships, or the

relationships among these entities.

The ability to send and receive such messages, of course,

cannot be fully exercised until a full network of simulated

processing centers is placed in operation. However, even in an

initial version it is important to be able to respond to

information received from an outside source that has already been
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processed to some level. This is particularly important in order

to demonstrate the ability of the system to deal appropriately

with unreliable information, or with information which can be

either redundant with its own deductions or in conflict with

them. Although the repertoire of capabilities to deal with such

messages necessarily will be limited in the initial system

design, some illustrative capabilities should be provided that

can be expanded as the system becomes more complete.

A.5 ASSOCIATION LINKAGES FOR KNOW.LE REPRESENTATIj

The human ability to carry out rapid analysis and updating

of knowledge depends on a complex set of memory associations

which permit rapid recall of pertinent related information. The

updating and analysis of the historical knowledge within a

computerized deductive system presents a very similar problem,

and requires a similar solution in the form of a network of

linkages which will permit efficient retrieval of relevant stored

information.

The basic organizational concept for the system is as

follows. Each entity in the simulation has its own data file

which contains the specific attributes, or descriptors, required

to describe that specific entity. In addition, each entity also

has a standardized skeletal record which contains all of the

association linkages required to retrieve related information.

Most of the required information retrieval processes can then be

accomplished quite mechanically by processing the linkage records

without regard to the actual data files--except where the

information in the data files is actually needed for the

analysis. This approach also makes it possible to postpone

detailed decisions about the specific attributes to be included

in each data file until the specific deductive algorithms are

defined.

The knowledge representation provides for two basic types

of linkage--relationship linkages and time-sequence linkages.
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The relaticnship linkages reflect the interactions (and

relationships) between historical entities that pertain at any

specific point in historical time. The time-sequence linkages

make it possibie to trace the sequence of states (and events) for

any historical entity either forward or backward in historical

time.

The ensemble of these linkages provides a basic skeleton of

associations which allows the system to efficiently locate,

retrieve, and update any information pertinent to a specific

deductive process.

A.5.1 TIME-SEQUENCE LINKAGES

During the period of time that an entity is under

observation, one can expect more or less continuous changes in

the estimated localization of the entity (i.e., in the estimated

position and velocity and the estimated accuracy of this

information). Moreover, during the period of observation the

localization of the entity will typically be derived from a

sequence of sensor observations. These two aspects of the

history of an entity are provided for in two basic linked lists:

"an observation list," which points to the basic sensor

observations or signals; and a localization history, which

contains the interpretation of these observations in terms of a

time-dependent localization history for the object of interest.

An adequate representation of history, however, will

require more than a simple history for each entity. The entities

may occasionally undergo transformations in which their identity

seems to change. For example, a platform set may be resolved

into one or more individual platforms or platform subsets--or an

emitter may be turned off and its identity may be in doubt when

it is turned on again. Such transformations in the probable

identity of an entity cannot be represented in the form of

position or observation data for an individual entity.
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To prcvide for such identity transformations within the

simulation, it is necessary to give the new entity (or entities)

a new name and to provide it with a new data file. The

time-sequence relationships between such entities are represented

through the use of predecessor or successor links which make it

possible to identify predecessors or successors. In some cases,

there can be ambiguity about which entity is the real predecessor

or the real successor. Consequently, each such link contains a

provision for a probability figure which reflects the estimated

probability that the link points to a true predecessor or a true

successor.

In addition to the predecessor and successor linkages,

there is a potential need for cohort linkages to link between

records that may be alternative representations of the same

object. Although this concept may not be implemented in early

versions of the system, a provision for it as a growth potential

seems advisable.

A.5.2 RELATIONSHIP LINKAGES

The relationship linkages make it possible to trace the

relationships and interactions that exist within the system at

any point in historical time. Fig. A-i shows the basic structure

of relationships that are represented in the system.

The links reflect the system's current assessment of the

interactions between sensors, signals, emitters, and platform

sets. As noted, a single sensor (such as S1 or S3) can be

simultaneously tracking several signals. Moreover the emissions

of a single emitter can be simultaneously detected as signals by

several different sensors (as illustrated for emitters E2

and E4 ). Although by definition each signal originates with a

unique emitter (or source), the actual source can sometimes be

ambiguous, so (as illustrated with K6 ) a signal can be associated

with some probability with more than one source. Similarly, as

I illustrated with E3 in the center of the figure, an emitter may
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not be localized well enough to uniquely associate it with any

specific platforms (or platform set) so it can be simultaneously

associated with more than one platform set with some probability.

Like all the other links in the system, the interaction links are

two-directional links that allow processing to proceed both

upward and downward in the linkage network.

In the initial implementation of the system, many of the

potential linkages will not be activated; for example, the

time-sequence relationships for sensors and signals may not be

needed. However, the framework is designed to be general enough

to have a great deal of growth potential.

A.5.3 DATA MANAGEMENT UTILITY FUNCTIONS

To facilitate updating operations within this knowledge

structure, a number of utility subroutines will be provided that

can accomplish routine functions such as: update the status of

specific entities; add or delete entities; update relationships

between entities; and subdivide or combine entities. The extent

to which such capabilities will exist or will have to be

developed will, of course, depend on the specific data base

system that is selected for the project.

A.6 ILLUSTRATIVE DATA STRUCTURES

The detailed data structures that will be used in the final

system will in all probability need to be modified to fit within

the framework of whatever data base system is to be used for the

model. The data structure described here, therefore, is not

intended to be final or definitive. Its purpose is to clarify

the functional operation of the system by providing an

illustrative implementation in terms of simple data records and

linkage pointers. For any specific data base management system,

the detailed relationships might be different, but conversion of

the illustrative data structure to achieve the same functional

operation should not be difficult in any appropriate system.
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The representaticn of historical knowledge in the

illustrative data structure is contained in a series ot lists

that are related through linkage associations. Table A-I

illistrates tne data content that will be required in the various

types of data records. Since we are concerned at this time with

a developmental system, computer efficiency in data storage has

been sacrificed to some degree for developmental efficiency.

This is reflected in part in the inclusion of reserved data space

to deal with presently unanticipated data requirements. It is

also reflected in the inclusion of a redundant data

classification code which should serve as a useful diagnostic to

detect any errors in list processing logic. The actual position

of data words in the records shown in Table A-1 is not intended

to be significant.

To facilitate the programming of the linkage structure, it

is helpful to minimize the number of lists required. This is

accomplished by combining the records shown in Table A-2 into a

set of only three different lists, which are illustrated in Table

A-3. Notice that each basic list uses exactly the same basic

data processing structure. The first word contains a linkage and

a code, which is followed by a list of N data words. From a data

processing perspective, the length of this list is the QfljY

feature which varies from list to list, so the same list

processing logic can be used for all lists. In each case, the

end of a list is signaled by a linkage entry which is either zero

or negative. (The negative data link in the entity linkage

record is used to maintain this convention.)

A.7 DEDUCTIVE METHODOLOGY

A.7.1 GENERAL DEDUCTIVE APPROACH

The deductive logic utilized within the model differs from

formal Bayesian inference in two ways. First, where Bayesian

type methods are appropriate, they are almost always replaced by

mathematical approximations which avoid the combinatorial
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TABLE A-i

DATA RECORDS AND LINKAGE STRUCTURE

.ntitv Data Record

kfo be defined individually for each entity type)

2. Entitv Linkaae Record

Wo r d

:Code .... ............. Specifies entity type
(sensor, signal, emitter,
platform set, ship)

--Space 9served for

subcodes--

2 Time origin ... ......... Starting time for entity

3 Time end ... ........... .End time for entity

4 Data pointer ... ......... .. Points to entity data
record (above)

5 History pointer ........ .Points to localization
historv

6 Observation pointer .. ..... Points to localization

observations

7 Successors ... .......... .Points to list of
successors

8 Predecessors ... ......... .. Points to list of
predecessors

9 Cohorts .... ........... Points to list of cohorts

10 Up pointer ... .......... .Points to upward
interactions (Fig. A-l)

11 Down pointer ... ......... .. Points to list of downward

interactions

12 Reserved for future needs

3. Entity History Record

1 Code ..... ............. Entity type and link type

2 Link ..... ............. Links to next history
entry

3 Time ..... ............. Time of localization

4 Localization ... ......... Points to localization

5 Reserved for future needs record

51

51r



TABLE A-i (Cont.)

DATA RECORDS AND LINKAGE STRUCTURE

4. Entity Observation Record

1 Code ..... ............. Entity type and link type

2 Link ..... ............. Links to next observation
entry

3 Time ..... ............. Time of observation

4 Observation .. ......... .Points to observation

5 Reserved for future needs

5. Genealogy Record (Successor, Predecessor, Cohort)

1 Code ..... ............. Entity type and link
type--(predecessor,
successor, cohort)

2 Link ..... ............. Links to next record
in list

3 Pointer ... ........... Points to entity of interest

4 Probability .. ......... .Probability of genealogy

5 Reserved for future needs

6. Interaction Record

1 Code ..... ............. Entity type and link type
(up or down)

2 Link ..... ............. Links to next record
in list

3 Pointer ... ........... Points to entity of interest

4 Probability ... ......... Estimated probability of
interaction

5 Reserved for future needs

7. Localization Data

1 X, Y, x' y' xy, Z, . Derivative pointer

2 \, i, y " Derivative pointer~X1 y I xyl z
3'y:' ' z" Derivative pointer

Note: A zero pointer implies no higher order derivative data
is available.
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TABLE A-2

LINKAGE ASSOCIATIONS

A. Time-Sequence Links for Entities

(Sensors, signals, emitters, platform sets, ships)

1. History Files

Localization history

Observation list

2. Genealogy Lists

Predecessors

Successors

Cohorts

B. Relationship Links

1. Interactions
Sensors 4 * Signals

Signals 4 b Emitters

Emitters 4 N Platform Sets
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TABLE A-3

LIST STRUCTURES

A. Standardized Data Structure (8 words)

Serves as: Entity data record and localization data

Word

la Link ..... ............. .. Continuation link for
longer data

lb Code ..... ............. .. Data-type code

2-8 Data

B. Entity Linkage Record

Serves as: Sensors, signals, emitters, and platform sets

Word

la Link data .... .......... .Points to associate data

lb Code ..... ............. .. Entity type

2a Time origin ... ......... .Starting time for entit

2b Time end ... ........... .. End time for entity

3a Observations ........... .. Points to observation
list

3b History .... ........... .Points to history list

4a Uplink ..... ............ Points to up associate
list

4b Dnlink ..... ............ Points to down associate
list

5a Predecessors ........... .. Points to predecessor
list

5b Successors .... .......... .Points to successor list

6a Cohorts .... ........... .Points to abort list

6b Reserved

C. Linkage and History Lists (3 words)

Serves for the following linkage lists: Interactions,
clues, ship classifications and genealogy using
following format:
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TABLE A-3 (Cont.)

LIST STRUCTURES

la Link ..... ............. Links to next list entry

lb Code

2a Pointer .... ........... Points to associate

entity

2b Probability ... ......... .Associate probability

3 Reserved

Serves for observation and history lists using the
following format:

la Link ..... ............. .. Links to next list entry

lb Code

2a Pointer .... ........... .Points to observation

2b Time ..... ............. .. Or localization record

3 Reserved
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comp.exity of the traditional methods of Bayesian inference.

Second, tc avoid excessive dependence on a priori estimates of

enemy strategy, the deductive processes are designed like common

sense deductions to be conservative. Instead of attempting to

assess the relative probability of alternative possibilities, the

deductive processes are designed to distinguish between areas

where conclusions can be drawn with considerable confidence and

other areas where we have to conclude that we simply do not know.

To implement this basic deductive concept, the model is

designed so that it can start from a basic hypothesis that the

location of all platforms is unknown. This baseline hypothesis

is then abandoned only when there is positive evidence to the

contrary.

Within the model this approach is implemented by starting

with an a priori assumption that all platforms are included in a

single large platform set which is labeled "unknown" and is

assumed to be located in some unobserved or unobservable part of

the ocean.

When specific signals are detected coming from observed

parts of the ocean, it of course becomes most unlikely that all

platforms are in the unobserved platform set "unknown."

Consequently, on the basis of positive evidence that is

inconsistent with the previous hypothesis, new platform sets are

introduced. This basic conceptual approach to the deductive

process is used in many different applications within the model.

In its generalized form it can be viewed as a principle of
"positive separation." No new platform sets are introduced

unless signals are received that give positive evidence that some

ships are separated from the existing platform sets. Similarly,

no new emitters are introduced unless there is positive evidence

of signals that cannot be explained by the emitters already

postulated. This principle of positive separation provides an

attractive way of approaching a conservative deductive process
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because it does not rely on any a priori knowledge of enemy

tactics.

A.7.2 DEDUCTIVE PROCESSING STEPS

The deductive processing logic can be viewed as a

combination of two basic processes:

1. T. A tracking algorithm is used to track

signals, emitters, and platform sets. Some research

will be required to select an appropriate algorithm,

since the need for retrospective historical tracking

and for conservatism to minimize vulnerability to

deception impose design requirements that are

somewhat different than in conventional tracking

applications.

2. Correlation methods. A correlation procedure is used

to decide when multiple tracks can be associated with

a common platform source. This procedure is used to

generate higher level constructs--such as emitters

associated with signals; or platform sets associated

with emitters. It is also used to decide when a

platform set can be resolved into subsets or

individual platforms. The end product of these two

steps is a list of platform sets and a list of

emitters which (with some probability) are assumed to

be associated with each platform set.

The following sections provide an introduction to each of

these deductive components.

A.7.3 THE TRACKING ALGORITHM

The use of a standardized representation of the signal

observations and the localization history for each of the

entities in the simulation should make it possible to use a

single tracking algorithm for most of the entities that need to

be tracked. The key entities which require tracking include

signals, emitters, and platform sets. For each such entity,
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there is a time-ordered list of observaticns which provide the

raw data from which the localization history must be calculated.

In order to convert these observations into an estimated

localization history, two things are required: a suitable

tracking algorithm and a representation of the laws of motion

that characterize the dynamical behavior of the entity that is

being tracked.

The laws of motion appropriate for an ocean surveillance

system should probably include at least two separate sets of

dynamics, one for ships and one for aircraft. In both cases, the

motion is characterized by a tendency to travel a fairly straight

course but with the capability to maneuver sharply at

unpredictable intervals. The aircraft dynamics of course permits

motion in three dimensions, whereas the ships are limited to the

two-dimensional surface of the ocean.

The development of a suitable tracking subroutine will have

to be viewed as a specific research task because of a number of

special characteristics of the present tracking problem. Whereas

most tracking filters are concerned only with providing an

estimate of the current localization of each track, the present

tracker must also provide an efficient retrospective estimate of

position and position uncertainty as a function of time. This

historical position data for each object tracked is required in

order to permit an accurate assessment of the association of

signals with specific emitters and platforms. Thus each time an

additional observation becomes available, the tracking algorithm

will have to take the observation into a.,"nt, not only as it

affects the estimate of current position, but also as it affects

the estimate of previous historical positions.

Based on experience in tracking such objects we are

confident that satisfactory performance can be obtained using

some variant of a Kalman filter with variable noise. However, we

believe that other approaches should be explored since it may be
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possible to provide comparable or even better performance in this

context with a simpler form of tracking algorithm.

For efficiency it would be desirable if the algorithm could

be designed so that a new observation would result in an

automatic updating of the localization history which extends only

as far backward (and forward) in time as is required for

reasonable accuracy. Obviously, an observation at a particular

point in time will have the greatest effect on position estimates

at about that time. Estimates of position at much earlier or

later times are likely to be only very slightly affected because

these estimates are controlled primarily by other observations

taken at the earlier or later times.

Although the design details of the tracking algorithm

remain to be developed, they are not required for the design of

the rest of the system. From the point of view of the rest of

the deductive processes, we can simply assume the existence of a

suitable tracking algorithm that can be used to update the

localization history for any object when a new observation

becomes available.

A.7.4 CORRELATION METHODOLOGY

The basic purpose of the correlation methodology is to

provide an association between signals and emitters and between

emitters and platform sets. In the relationship between signals

and emitters, the correlation methodology is used to decide which

signals are to be attributed to the same emitter. At the level

of emitters and platform sets, the correlation methodology

determines which emitters are to be attributed to the same

platform set, and it is also used to decide when a platform set

should be decomposed into subsets or individual platforms.

Since in many cases the associations may be ambiguous, the

methodology is designed so that it can provide a probabiIistic

estimate of the required associations. when there are several
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reasonably probable associations separate probabilistic links are

provided to each of the alternative associations. However, when

the association probability falls below a certain critical

threshold (probably around 1% or less), the corresponding

probability links are dropped from the data base to avoid an

undue burden of data storage and computation.

A.7.4.1 The Design Principle

The basic correlation methodology follows a common design

principle in each of the cases where it is applied. A measure cf

merit for each of the plausible associations is computed, and

corresponding probabilities of association are estimated that are

proportional to the various measures of merit. The measures of

merit are designed so that they provide a rough estimate of the

probability that a separation as large, or larger (than the

apparent separation between sources) would be observed if they

were actually a single source. The observed "separation" of

course can be in a multidimensional space which m.ight include

factors such as frequency, waveform, and repetition rate, as well

as estimated position in time and space. For simplicity, in

cases where the measure of merit reflects such a multidimensional

correlation, the measures of merit can be calculated as a product

of simple measures of merit--appropriate to the various

dimensions of the correlation. (To avoid generating combined

measures of merit that are inevitably smaller than any of the

simple measures, the individual measures may be multiplied by a

factor of two--so that a product of measures of merit

corresponding to the typical 50% probability would yield a

correspondingly typical combined measure of merit).

The foregoing methodology provides a conceptually simple

and logically consistent way of estimating the probability of

association with alternative existing emitters or platform sets.

It leaves, however, the problem of how to estimate the

probability that is not associated with any existing entity--so

that a new emitter or a new platform set must be created.

60



In a formal Bayesian procedure, one would have to ask how

likely it is that a different emitter (or platform set) would be

located within the observed separation from an existing emitter

(or platform set). As noted earlier, such estimates can be

extremely sensitive to one's interpretation of enemy tactics.

The probability could be very high if the opponent deliberately

chooses to locate emitters and platforms very close together in

frequency or geographic space. The probability could be low if

he typically avoids such collocaticn. To avoid having deductive

processes that are unduly sensitive to estimated tactics, the

design makes use of a principle of positive separation. New

emitters and platform sets are not created unless the data is

quite inconsistent with the hypothesis that the observations are

associated with an existing source. To implement this principle,

the correlation system operates as if the a priori probability of

a new entity is low. For example, if the a priori probability of

a new platform set is taken as 1%, then the probability assigned

to a new platform set will tend to be small so long as the

platform set is within the 1% probability range of existing

platforms. The specific a priori probability used can be viewed

as a probability threshold for the creation of a new entity. In

most cases, system performance should not be very sensitive to

the specific threshold selected, and experimental tests can be

conducted to determine what range of values gives the most

satisfactory performance. Of course, once a new entity has been

created, it will tend to increase rapidly in probability if

confirming evidence continues to support its existence.

It is worth noting that for entities that have been tracked

for a considerable period of time, the appropriate measure of

separation will include a product of measures of merit

corresponding to different periods of tracking. Thus, if

substantial positive separation is observed at any time during

the tracking period, a new entity would be created and

maintained.
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A .7 .4.2 TYicaI P ro_

To illustrate the operation of the correlation methodology,

it may be useful to discuss the processing steps required for the
analysis of a new signal. When a signal is observed by a sensor,

it is checked against historical signals observed by the same

sensor to determine whether it can be interpreted as a

continuation of a previously observed signal. If it can, it is
used to update the localization history for that signal. If it

cannot be associated with a previous signal, it is entered as a

new signal. In an unusual case where it can be reasonably

associated with more than one previous signal, a new signal is

entered and probabilistic predecessor links are provided to the

prior signals.

After the signal records are updated, the next step is to

update the emitter records. For a new signal, a search is made

of known emitters to determine whether that signal can be

associated with any existing emitter. If not, a new emitter is

entered. If correlation is found with one or more existing

emitters, appropriate probability links are entered. If the

calculated association probability is very high (for example,

above 90%) with any specific emitter, the signal can be viewed as
uniquely associated with the emitter and can be used to aid in
the localization of that emitter. As signals are updated, they

are systematically used to update the localization of emitters

with which they are uniquely associated. In addition, the

association probability is updated. If the association

probability falls below a critical level, the unique association

can be broken and alternative associations either with a new

entity or with another existing entity will be defined.

After the emitter records have been updated, the next step

is to update the associated platform sets. Essentially, the same
set of steps are repeated--first, to associate a new emitter with

existing platform sets if possible; second, to update the
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platform set localizations where appropriate; and finally, to

create new platform sets when the existing ones are not adequate

to reflect the available data.

The end product of the tracking and correlation analysis is

a time-dependent set of entities with appropriate time-dependent

location data and time-dependent association linkages that

reflect all of the correlation and tracking results up to any

specific simulated time. The output information that is

pertinent to the analysis of platform set identity, however, is

limited simply to the set of emitters that is estimated with some

probability to be associated with each platform set. The system

is designed so that this information can be utilized at any time

by the ship identity inference system to provide an up-to-date

assessment of ship identity.

I I6



ANNEX B

CONCEPTUAL DESIGN FOR THE SHIP IDENTITY INFERENCE SYSTEM

B.1 INTRODUCTION

The main paper of this report described a new approach for

automatic fusion of multisensor ocean surveillance data.

The basic methodology involves two basic components:

1. An historical correlator which provides a

retrospective association of the clues with specific

current platform sets, and

2. A ship identity inference system, which provides an

assessment of what can be known about the identity of

ships in each platform set on the basis of the

available clues.

This paper describes the design concept for the second

system (specifically the ship identity inference system).* The

historical background and the intuitive rationale for the

approach are developed in Sections B.2 and B.3 of this Annex.

Sections B.4 and B.5 discuss the mathematical formation and

solution methodology, and the last two sections discuss some

remaining theoretical problems.

B.l.1 STRUCTURE OF THE PROBLEM

The basic input data required for the ship identity

analysis consists of the tabulation of emitters associated with

each platform set that is provided by the historical correlator.

This list of emitters includes not only active emitters observed

such as radars, communication systems, and noisy propellers, but

also it includes passive emitters such as a ship hull that

*DSA's original formulation of this ship identity algorithm,

which was reported in DSA Report No. 276, used a slightly
different mathematical form based on information theory. This
annex supersedes that earlier version.
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reflects optical and radar signals cr a warm hull that radiates

infrared. The totality of such emitters identified by the

historical correlator for all platform sets constitutes the set

of clues that are available to be analyzed by the ship identity

inference system.

The basic purpose of the identity inference system is to

decide what can be known about the identity of the ships in each

platform set when this totality of available clues is analyzed in

the context of available intelligence and background information

such as electronic order of battle data. Because of the size of

the problem and the importance of coordinated tactics in

determining which emitters will be turned on, it is not

computationally feasible to approach the problem rigorously using

the formal Bayesian methods of mathematical infereoce.

B.1.2 RELATIONSHIP TO THE ELECTRONIC WARFARE DECISION AID (EWAR)

Several years ago, in connection with the ONR Operational

Decision Aids program, DSA developed an electronic warfare

decision aid (EWAR)l,2 which utilized emitter clues to provide an

estimate of ship identity in a computational context much like

the present problem. The EWAR system used a heuristic

approximation to Bayesian inference, which had been developed to

avoid the combinatorial calculations of the formal Bayesian

approach. Originally it was hoped that this algorithm could be

generalized for application to the counter surveillance problem.

It was obvious, however, that the EWAR algorithm could not be

used directly because it was limited to certain restrictive

scenario assumptions that were not acceptable in the more general

ocean surveillance problem. In particular, a satisfactory

ID. F. Noble, An Emissions Control Decision Aid, DSA Report No.
66, July, 1978.

2D. P. Noble, Development and Evaluation of an E
Decision Aid, DSA Report No. 246, July, 1980.
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counter surveillance algorithm would have to be able to deal with

the following complexities that were not considered in the basic

EWAR scenario.

* Unknown number of ships in apatf st. In the

EWAR scenario it was assumed that radar blips could

be resolved to individual ships, so it could be

assumed that each platform set contained one and only

one ship. The EWAR problem, therefore, was simply to

decide what single ships are most compatible with the

observed signals from the platform set. The

possibility of explaining the signals in terms of two

or more ships did not have to be addressed.

0 Probabilistic association of emitters. In the EWAR

algorithm it was assumed that emitters could always

be uniquely associated with a single platform set.

Thus, it was not necessary to consider situations in

which an emitter could be associated with two or more

alternative platform sets. Obviously, such

probabilistic association of emitters introduces an

additional complication in the deductive process.

* Problem of redundant or unreliable information. When

the reality of multiple information processing

centers is considered, new analytical problems arise

because the information received from other analysis

centers could be either redundant or unreliable. For

example, processed analytical reports received from

another center might incorporate information from

sensors that are also being analyzed locally.

In an effort to generalize the EWAR algorithm a number of

revised heuristic concepts were developed and tested, but it soon

became clear that the old algorithm could not be satisfactorily

generalized and that some fundamentally different approach would

be required.

i
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B.1.3 SOLUTION METHODOLOGY

The new methodology which is used in the ship identity

inference system uses an extension of a principle of mathematical

inference which is known as minimum cross-entropy. Although the

resulting minimum cross-entropy algorithm is far more formal and

systematic than the deductive methods that are actually used by

human intelligence analysts, it appears to operate on the same

basic deductive principles. The discovery that the required

analytical processes could be simulated using a single well

structured mathematical algorithm was one of the major research

findings which made the overall design concept feasible.

To evaluate the performance of this new cross-entropy

approach, a small demonstration version of the algorithm was

developed and tested. The performance of the algorithm proved to

be excellent. For a wide variety of small problems (including

all those addressible by EWAR) it produced results that were

numerically indistinguishable from the results that would be

produced by Bayesian methods. Deviations from the Bayesian

results seemed to occur only in cases where the validity of the

assumptions required by the Bayesian analysis were in doubt, and

in those cases the algorithm (much like a human intelligence

analyst) produced results that were more conservative or less

conclusive than the formal Bayesian results.

B.1.4 STATUS OF DESIGN EFFORT

This annex outlines a basic design concept based on the use

of the cross-entropy algorithm. A considerable amount of

theoretical and experimental work remains to be done to develop a

full understanding of the relationship of this cross-entropy

approach both to the formal Bayesian methods and to the intuitive

methods used by intelligence analysts. In addition, a

considerable amount of development effort will be needed to

extend the basic design so that it can deal with all of the

complexities of ocean surveillance intelligence problems.
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Nevertheless, the research to date has established that the

approach is computationally feasible, that it produces results

which have an excellent correspondence with human probability

estimates, and that it provides a basic foundation which appears

to be rather easily expanded to include almost all of the

required intelligence processes.

B.2 QUALITATIVE OVERVIEW O._.DnOLOGY

B.2.1 DIFFICULTIES WITH BAYESIAN FORMULATIONS

The initial efforts to produce a new algorithm began with

the familiar Bayesian formulations of the problem. However,

because of the way tactics tend to be correlated among multiple

ships and multiple emitters the rigorous Bayesian approach faces

a number of apparently insurmountable problems.

If one were to try to approach the problem by Bayesian

methods, one would have to explicitly consider every possible

combination of ships in every platform set to determine how well

each such combination would explain the observed emissions. The

resulting likelihoods would then be multiplied by the a priori

probabilities, and the resulting posteriori probabilities would

then be normalized to 1.0.

There are at least three serious problems with this

approach. First, the required computation is astronomical. For

example, if we had just fifty ships and fifty platform sets we

would have to deal with fifty factorial (or approximately

3 x 1064) combinations. Second, there is no logical way of

assigning reasonable a pciori probabilities to the combinations.

The assumption that all combinations are equally likely is

certainly very wrong since most of the possibilities would not

correspond to any conceivable reasonable tactic. Third, even if

we could select suitable a priori probabilities, there would be

no way to calculate the probability of specific patterns of
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electronic emissions, since the choice of which emitters to turn

on is an integral part of definition of a specific tactic. These

general problems seem so fundamental that there does not appear

to be any way of circumventing the difficulty by restructuring

the Bayesian formulation.

B.2.2 THE COMMON-SENSE APPROACH TO DEDUCTIVE INFERENCE

When human intelligence analysts are faced with such

deductive problems, they use analytical methods that are very

different from the combinatorial Bayesian analysis that is now

the standard theoretical approach.

The human analyst uses a kind of puzzle solving logic.

First, he asks what types of ships at each location could
"explain" the observed signals. Second, he considers the

problems of global consistency. For example, if a specific ship

is required at one location to explain the observations, then one

must avoid using the same ship to explain observations at another

location.

One other important characteristic of this logic is that it

deliberately avoids reaching any significant conclusions that are

not r by the available information. For example, if a

specific radar such as an SPS-52 is observed, the analyst does

n conclude that some specific ship (for example, the Kitty

Hawk) is present. Such a conclusion would not be justified by

the limited available information. Instead, the analyst will

conclude that it could be Any of the ships equipped with the

SPS-52. Obviously, either of the two conclusions would be

c s with (and would "explain") the observed evidence, but

a the more conservative conclusion is considered to be

"justified."

If we are to simulate this human deductive process we will
need to formalize the reasons why the second conclusion is viewed

as a more "logical" or better "justified" deduction. One of the
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most important distinguishing features of the second conclusion

is that it is less specific than the first. In effect, the

preferred deduction appears to be the one that is as nonspecific

as possible--consistent with the available evidence.

This suggests a simple approach for the simulation of human

deductive logic which formalizes this intuitive concept. A more

formal statement of the basic deductive principle is as follows:

"the legitimate conclusions that can be drawn from any set of

evidence are those that are as nonspecific as possible consistent

with the available evidence." The deductive logic used in the

ship identity inference system is based on a mathematical

formalization of this common-sense concept.

The logic used by human analysts appears to have one other

very important feature which is often overlooked in mathematical

formulations. The human analyst does not attempt to consider or

assess the likelihood of a combinatorial set of possibilities.

Evidently, his deductive logic is applied dirstl to the

probability distributions for the indiida ships. Thus, in a

technical sense it appears that he works directly with the

marginal probability distributions, without explicitly

considering .the joint probabilities.

This approach, of course, provides an enormous saving in

the requirements for information storage and calculation. For

example, in the case of 50 ships and 50 platform sets, there are

only 50 possibilities that must be considered for each ship. If

we sum this requirement over the 50 ships we find a total of 2500

possibilities that need to be explicitly considered. This is

obviously a tremendous saving relative to 3 x 1064 combinatorial

possibilities. As a practical matter it makes the difference

between a feasible and a totally infeasible computational

problem.
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B.2.3 A MATHEMATICAL INTERPRETATION

The first step in developing a mathematical formalization

of the common-sense deductive process is to choose a way of

representing the "knowledge" that is to be maintained and

updated. In keeping with our understanding of the human

analytical methods, we have selected a representation of

knowledge that includes D the marginal information. This

allows us to represent our knowledge of ship identity in the form

of a single probability matrix.

Specifically, the estimated probability that a specific

ship i is associated with a specific platform set j is

represented by the probability Pij. Since each ship must be

somewhere, we know that for each ship i, the summation of P

must be equal to one, when the summation is carried over All

R ship locations or platform sets. If we are to achieve

the potential computational efficiency of this approach we will

need to define a mathematical approach that allows the deductive

calculations themselves to be performed using this same compact

representation of the knowledge. In particular, we must avoid

algorithms which would require us to explicitly consider the

detailed joint probabilities for all combinations of ships.

The second step in developing the algorithm is to formalize

mathematically what we mean when we say a deduction "explains,"

or is "consistent with", the evidence. In our mathematical

formulation, this concept is implemented by defining a set of

constraints on the derived probability distributions P.i that

must be met if the deductions are to be considered consistent

with the evidence.

Fortunately, the information provided by the sensor

observations can be conveniently represented in the form of such

a set of constraints on the probability distribution Pij. For

example, if signals from a particular emitter type such as an

SPS-52 have been observed coming from a particular platform set j
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then we can feel quite sure that the platform set includes at

least one SPS-52. This imposes a constraint on the allowarie

distributions, which requires that the summation of P foriJ

platform set j over all ships i equipped with an SPS-52 must te

at least equal to 1.0 (otherwise the distribution is not

consistent with and cannot explain the observed signal from

platform set j). Similarly, if radar observations have told us

that the platform set includes exactly three ships, and no ships

have been detected leaving or entering the group, then we can be

quite sure that the platform set still includes three ship hulls

and that the summation of Pij over all ships must be equal to

three. Thus, the sensor observations provide information which

allows us to specify various congtrat = on the probability

distribution Pi]"

The third step in developing a mathematical analogue of the

human deductive logic is to decide how to represent the

requirement that a deduction should be as "nonspecific" as

possible consistent with the available evidence. Typically,

there are many possible distributions Pi that can satisfy the

required constraints. Indeed, for our previous example any

probability distribution Pij will satisfy the constraints so long

as it includes an expected value of three for the number of ships

in platform set j, a=d an expected value of at least one ship

equipped with an SPS-52 radar.

Thus, we need some criterion for selecting from among all

the possible distributions which meet the constraints, a single

preferred distribution which constitutes the "proper" deduction.

The intelligence analyst typically looks for the least specific

deduction which will "explain" the evidence. In order to provide

a computer simulation of such a deductive process we will need a

formal mathematical criterion corresponding to our intuitive

concept of "least specific."

!
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In the present system design we use an extension of the

principle of minimum cross-entropy to provide the required
mathematical definition of "least specific." In principle, the

mathematical process operates as follows: first, we consider the

set of all possible probability distributions Pij that meet the

specified constraints. Second, we select from this set the

single unique probability distribution P.] for which the

calculated cross-entropy is lowest. By our formal definitions,
we have then found the least specific set of assumptions

concerning ship identity that is capable of "explaining" the

observations.

We can now summarize the basic axioms of the approach as

follows:

1. Knowledge is represented only in the form of

marginal probability distributions Pij"

2. A valid deduction is one which satifies two

requirements: (a) it is consistent with the evidence

(i.e., it satisfies a set of constraints derived from

the observations); (b) it is as nonspecific as

possible (i.e., it minimizes total cross-entropy

subject to meeting the constraints).

3. The total cross-entropy H is defined as the summation

of the cross-entropy hi associated with the marginal

probability distribution Pij for each ship i.

Specifically:

H = Zhi (2-1)

i

where

hi ln Pi/P. (2-2)
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and Pj represents the assumed a priori probability distribution
for each ship among the various platform sets j.

B.2.4 MATHEMATICAL BACKGROUND

Obviously, the selection of cross-entropy as a way of

formalizing the intuitive concept of "nonspecific" is somewhat

arbitrary when it is interpreted only within the context of the

common-sense deductive axioms. For example, any nonlinear

function such as:

P or 1 ln P (2-3)i or P3ij j

which would penalize large values of Pij could be selected as a

definition of "nonspecific." The particular choice of the

cross-entropy function was of course dictated by other

theoretical considerations.

The cross-entropy methodology has an appealing relationship

to information theory which suggests that it is a particularly

appropriate form for the purpose. Moreover, in a wide variety of

situations it can be shown that the cross-entropy formulation

will produce results identical to Bayesian inference. Finally,

there is an established literature which testifies to the general

success of the cross-entropy methodology in producing appropriate

mathematical inferences.

It is worth noting, however, that the version of

cross-entropy which is being used here differs from what is

usually used in formal scientific applications in that the

entropy principle is being applied directl to the marginal

distributions. In scientific applications the entropy concept
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has typically bEen applied to complete and independent states,

3ust as with the Eayesian method.

In the field of operations research it appears that the

cross-entropy principle has been used for a number of

applications where it has been applied directly to the marginal

distributions, but the formal mathematical justification for this

approach is unclear.

A recent article by John Shore and Rodney Johnson,

"Axiomatic Derivation of the Principle of Maximum Entropy and the

Principle of Minimum Cross-Entropy," I appears at first sight to

provide a theoretical foundation for the approach. However, an

examination of the article reveals that their derivations assume

a complete and independent representation of states.

Consequently, it appears that at least some of their results are

not applicable to the direct use of cross-entropy for marginal

distributions.

Thus, considerable fundamental work is needed to develop a

satisfactory theoretical understanding of the method.

B.2.5 RELATIONSHIP TO BAYESIAN INFERENCE

Our experimental tests of ship identification algorithms,

have shown that for a wide variety of problems the marginal

cross-entropy method produces results which are numerically

indistinguishable from the Bayesian results. Nevertheless, we

have identified certain classes of problems where the two methods

produce quite different results. In these cases, the predictions

of the cross-encropy algorithm seem to be in better agreement

with military 4udgment than the more familiar Bayesian method.

As yet, the precise theoretical nature of the difference has not

lI. E. Shore and R. W. Johnson, "Axiomatic Derivation of the
Principle of Maximum Entropy and Minimum Cross-Entropy," IEEE
Transactions on Information Theory, January, 1981.
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been established. However, a comparison of the assumptions

required and the results produced by the alternative methods

suggests that the primary difference is in the degree of

conservatism, as opposed to the deductive efficiency provided by

the two methods.

In order to use the Bayesian methodology, it is necessary

to specify very detailed assumptions concerning the underlying a

priori probability distributions (including the degree of

correlation between different emitters and different ships).

Moreover, it is necessary to formulate a c and independent

set of alternative hypotheses about the state of the system to be

analyzed. The Bayesian method of inference treats A such

detailed assumptions as immutable facts, and it produces the most

efficient possible deductions--given that all of the specified

assumptions are pis l true.

Because the Bayesian methodology treats its assumptions as

absolutes, the resulting deductions are typically very sensitive

to the assumptions. If the assumptions are inaccurate or

unjustified then the methodology can produce apparently

d nitiye conclusions that may be entirely unwarranted when the

uncertainty in the assumptions is taken into account.

The cross-entropy deductive method, in contrast, does not

require the user to supply any more detail in the input

assumptions than he intends to utilize in the results. As a

consequence, it is not suprising that the calculated deductions

seem to be more conservative, because there are fewer a priori

assumptions. The cross-entropy deductions, of course, are still

dependent on the assumed a priori distributions, but apparently

because the number of assumptions is less the degree of

sensitivity is far less.
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In a tactical context (where a wide variety of deceptive

tactics can be expected) a conservative method of deduction, that
is relatively insensitive to dubious a priori assumptions seems

likely to be far more satisfactory than the traditional Bayesian

approach. This expectation seems to be confirmed by our

observation that the cross-entropy inferences in our test cases

appear to have a better correspondence with military intuition.

As noted earlier, the crt.s-entropy approach has a decisive

advantage over the traditional Bayesian methods with regard to

computation time. Because the typical Bayesian calculations

scale ac£y with the number of ships, the computational

burden can reach astronomical levels even for modest problem

sizes. The cross-entropy calculation in contrast remains

computationally feasible even for very large problems.

Finally, the new formulation of the deductive process as an

optimization problem provides a far more flexible theoretical

structure that can be easily adapted to account for complexities

and subtleties in the problems that are very difficult to include

within the Bayesian method.

For all of these reasons we believe that the cross-entropy

methodology provides an ideal approach for simulating the complex

deductive processes involved in an ocean surveillance network.

B.3 HISTORY OF CROSS-ENTROPY AS A METHOD OF MATHEMATICAL

The historical origin1 of cross-entropy began in the field

of thermodynamics, where entropy was originally defined as a

measure of the degree of disorder in a system. The higher the

entropy, the more the disorder. Consider a probability

For a more detailed review see article by E. T. Jaynes, "Where
Do We Stand on Maximum Entropy" in The Maximum Entropy
Formalism, Levine & Tribus Editors, The MIT Press, 1979.
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distribution for an arbitrary physical system which can have a

large but finite number of possible states. If we represent the

probability that the system is in any specific state j by a

probability Pj then the entropy S, for the distribution is

defined as:

S = lP in P. (3-1)
J

In 1948, C. E. Shannon published his paper "A Mathematical

Theory of Communications"1 in which entropy was also recognized

as a quantitative measure of information content. The higher the

entropy, the lower the information content. Thus, the selection

of a probability distribution with the highest entropy content

would also select the one with the lowest information content.

To a first approximation this is what the present algorithm does.

That is, for any specific set of evidence, the algorithm selects

the least specific probability distribution Pij (i.e., the one

with the lowest marginal cross-entropy) which is consistent with

the evidence.

The use of the principle of maximum entropy as a method of

mathematical inference was originally suggested by E. T. Jaynes
2

in 1957. Jaynes' original formulation of the principle of

maximum entropy using Eq. 3-1 still seems quite satisfactory in

situations where there is no ambiguity about how one should

define a "system state." However, in many practical applications

the "system state" is more conveniently viewed as a continous

variable, and the choice of how the state should be quantized

into the discrete states required by the standard definition of

1C. E. Shannon, "A Mathematical Theory of Communication", Bell

ISyst. Tech- J., vol. 27, pp. 379-423, 623-656, 1948.
2E. T. Jaynes, "Information Theory and Statistical Mechanics I",

i Re., vol. 106, pp. 620-630, 1957.
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entropy used in Eq. 3-1 seems totally arbitrary. Moreover, when

this traditional entropy measure is used in a deductive

algorithm, the deductions are not independent of the choice of a

coordinate system. Obviously, any valid deductive procedure

should produce results that are invariant to the choice of a

coordinate system. This theoretical deficiency in Jaynes'

original entropy method, however, is rather easily corrected by

using the "cross-entropy" measure rather than the simple

thermodynamic "entropy."

Cross-entropy is defined simply as follows:

h = EP in (P/P) (3-2)
JJ]

where Pj represents the a priori probability that the system will

be found within the specific state j. In this formulation, the

calculated value h of the cross-entropy is not changed when a

quantized state is subdivided, because the ratio of the

posteriori to a priori probability is independent of cell size.

This refinement of the approach, which is now identified as

cross-entropy, was originally suggested by S. Kullbackl in 1959,

and was first labeled as cross-entropy by I.J. Good 2 in 1963.

The use of the cross-entropy formulation provides a unique

measure of the degree of order of a probability distribution P

(relative to a known a priori distribution Pj) which is

independent of the definition of cell size.

IS. Kullback, Information Thgory an-s . New York:

Wiley, 1959.
2I. J. Good, "Maximum Entropy for Hypothesis Formulation,

Especially for Multidimensional Contingency Tables", Anals
M Sta_., vol. 34, pp. 911-934, 1963.
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It is this formulation of entropy that is used in the

present ship identity inference algorithm. Specifically, an

optimization method is used to minimize cross-entropy subject to

the specified constraints. In this mathematical formulation, the

minimization of cross-entropy guarantees that the inferred ship

probability distribution will be as nonspecific as possible

within the constraints defined by the observed signals.

In a very recent paper1 John Shore and Rodney Johnson were

able to derive the principle of minimum cross-entropy from more

fundamental mathematical axioms. Specifically, they were able to

show that among all possible deductive methods that are based on

the optimization of a function, the cross-entropy approach is the

only one that can avoid logically inconsistent results. Their

proof, however, does not establish the existence of any "valid"

method of deduction based on function optimization. Moreover,

their derivation appears to assume complete and independent

states so the relevance of their derivation to the use of

cross-entropy on marginal distributions where the states may not

be independent is unclear.

The practical value and usefulness of the cross-entropy

methodology, both in detailed and marginal form, is not in doubt.

The basic principle has been successfully applied to a wide

variety of high technology problems that could not be easily

addressed by conventional Bayesian methods. These include

problems in thermodynamics, electromagnetic frequency analysis

'where the observations are limited in time, space, or

zandwidth) , and problems in earthquake analysis and seismic

ietection of nuclear detonation. It has also been applied in

: Targinal and detailed form to a wide variety of decision

and Johnson, Ibid.

9i
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problems such as queing theory, stock market analysis, production

line decision-making and many others.

The correspondence which is developed in this paper between

common-sense intelligence methods and the marginal form of

cross-entropy suggests that the approach has a reasonable

axiomatic foundation as a simulatioD of common-sense deductive

processes. What remains unclear is the accuracy of the

correspondence to human judgment and the theoretical relationship

to more formal methods of mathematical inference.

B.4 MATHEMATICAL FORMULATION OF INFEENC PROBLEMI

B.4.1 INITIAL SIMPLIFICATIONS IN PROBLEM FORMULATION

When the ship identity inference problem is examined in its

full detail it includes a number of complicating factors that do

not fit neatly into a simple formulation, even using the marginal

cross-entropy approach.

Some of the most important complications concern clues

which have some elements of uncertainty, such that it seems

inappropriate to classify them as constraints, but where it is

also obvious that they must somehow be considered in the total

system of evidence that determines the solution.

Some examples of this type of problem include:

1. Cases where the classification of an emitter type is

uncertain.

2. Cases where the amplitude of the signal can be an

indicator of the nature of the emitter, as in the

case of radar returns.
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3. Cases where the signal is well enough localized to

strongly suggest a specific platform set as the point

of origin, but where it is not well enough localized

to exclude alternative explanations.

Although a number of heuristic approaches have been

identified for dealing with these practical complications, it is

not yet clear what approach will be most satisfactory. The

development and justification of specific procedures for

including these practical considerations will require future

research that goes beyond the scope of this report.

In the following mathematical development, each of these
issues is either simplified out of the problem statement, or

treated by an approximation that is obviously imperfect. This
approach allows us to develop a simple and mathematically

consistent formulation (which is of course both incomplete and

imperfect in its correspondence with the actual sea surveillance

inference problem). The final sections of the paper discuss

these limitations of the simplified theoretical formulation as a

way of defining requirements for future research.

B.4.2 MATHEMATICAL FORMULATION OF SIMPLIFIED PROBLEM

The simplified ship identity inference problem can be

formulated mathematically as follows. For each ship i we define
a probability distribution Pij corresponding to the estimated

probability that the ship i is located within any specific

platform set j. In addition we define an a priori estimate P°
1J

of these same probabilities. We can then define the total

cross-entropy for the distribution as a summation of the

cross-entropy over all ships considered. Specifically, this

leads to the following mathematical representation of the

marginal cross-entropy, H, which is to be minimized subject to

certain constraints that remain to be specified. Specifically:
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H = in (Pij/Pij) (4-1)

i j

If the distribution Pi] is to be compatible with the

observed signals, then it must provide at least one emitter of an

appropriate type and location to explain each observed signal 1.

We assume that each such signal has been classified as

originating with an emitter of type k with a confidence Skl .

Moreover, we assume that electronic order of battle information

on all ships of interest is available, so that the number of

emitters of type k on each ship i is known and can be represented

in an array aik. We also assume that the localization

information for each signal 1 can be summarized in the form of a

set of likelihood estimates X~l that define an a priori estimate

of likelihood that the observed signal could have originated at

each of the platform sets j. Finally, for each signal 1 we

define a set of parameters Xjl which will reflect the estimated

posterori probability that each signal 1 actually originates from

each platform set j. Table B-i summarizes the foregoing

definitions.

Based on the foregoing problem definition we can now

formulate a set of constraint relationships which must be

satisfied by the final probability distribution P." If we are

to explain each signal then the summation of XjI and XI over all

platform sets j must be equal to 1.0. Specifically:

j = 1.0 (for all 1) (4-2a)

EX = 1.0 (for all 1) (4-2b)

J
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TABLE B-i

SUMMARY OF DEFINITIONS

o

Pij' Pij a priori and posteriori probability that
ship i is located at platform set j

Skl confidence that signal 1 originates with
an emitter of type k

a
Xjl, Xj a priori and posteriori probability that

signal 1 originates with platform set j

aik number of emitters of type k located on
ship i
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Moreover, the number of emitters of each type k at each

platform set j must be sufficient to account for the estimated

values of Xjl. In particular:

ZPijaik XjkSkl (4-3)
i 1

The equation is written with an inequality because an

emitter that is present may be turned off, and even if it is

turned on it may not be detected as an observed signal 1.

One of the important issues that is not yet satisfactorily

resolved is how the posterori values Xjl really should be
0influenced by the a priori likelihood estimates Xjl. To avoid

unneccessary complications in the present derivation we will

simply assume the following very simple relationship:

Xj= X0 (a simplifying assumption) (4-4)

In a limiting case when all values of XJl are either zero

or 1.0 this assumption is obviously a good one. However, in the

case of intermediate values of Xjl it must be viewed as a very

rough approximation. The implications of this simplification

will be discussed after the basic derivation is complete. Using

this simplification the basic constraint Eq. 4-3 can be rewritten

as follows. For all j, k

PijaiX 0 XiSl (4-5)

i 1

In order to provide a practical computational algorithm we

need to develop an efficient way of solving for values of Pij
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that will minimize the cross-entropy H subject to meeting the

constraints specified in Eq. 4-5 above.

B.5 SOLUTION METHODOLOGY

Although in principle one can think in terms of a large and

comprehensive set of ship locations i and solve the problem in

this way, it is more convenient in most practical problems to

consider two separate categories of locations: first a small

number of specifically identified platform sets, 3, for which

there is some form of concrete evidence (usually in the form of

signals received); and second, another very large group of

locations for which there is no specific evidence. we will

identify this second large set of Iccations as a single

generalized platform set which we will label as the unknown

set u.

Using this revised notation we can rewrite the total

cross-entropy Eq. 4-1 as follows:

H = in (P. /P. ) + P ( /Pi0 (5-1)
ZIiuiu iu ~ij ~ij" i(-1i j

where we define Piu and Piu as follows:

Piu , 1 - i (5-2)

J

and

S(5-3)
Su j

In order to generate probability distributions that will

minimize cross-entropy subject to specified constraints, it is

8
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important to know how the cross-entropy H as defined in Eqs. 5-1,

5-2, and 5-3 above change when changes are made in the individual

probabilities Pij. To determine this dependence we can

differentiate H with respect to the individual probabilities Pij.
Carrying out the differentiation we obtain:

H P.. P.
- In - ln u (5-4)

0 0)Pp. P

where P and PT are defined as in Eqs. 5-2 and 5-3.

To minimize the cross-entropy H subject to the specified

constraints,

EPijak XSkl (5-5)
i 1

we form a Lagrangian function L in which each of the above

constraint relationships is multiplied by a separate Lagrange

multiplier Njk" Specifically, the Lagrangian takes the form:

L = HP. j) + i- S (5-6)
j,k i 1

For any specified set of Lagrange multipliers ' jk the

minimum of this Lagrangian will occur where the derivative

relative to all of the probabilities Pij is zero.

Differentiating Eq. 5-6 relative to P. we find:13

dL P.. iP.u

- in n - n -o+ "jk a ik (5-7)
a i]- ii iu k
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which yields the following conditions for a minimum of the

Lagrangian:

P i - exp a (5-8)jP 0 jkaik

iJ iu k

and this can be rewritten:

P.
'P'k exp ajkaik) (5-9)

i) iu

Fortunately this set of equations can be solved directly to

yield specific values of Pij for any specified choice of the

multipliers 'jk- For convenience in the solution we define a new

set of parameters Zi -1

Zij =T exp (Cjkaik) (5-10)

We can now rewrite Eq. 5-9 as follows:

P.

P 0 Pu (5-11)ij = P jzij P O--ll
iu

In this equation all parameters except Piu are assumed to
be known. But from Eq. 5-2 we know that Piu can be expressed as

a function of the summation of the Pij over j. This sum can be

calculated by summing Eq. 5-11 over j. Carrying out the

summation we obtain:

8
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(jp) iu7-pji (5-12)

But from Eq. 5-2 we know:

pj= 1.*0 - iu5-3

Substituting into Eq. 5-12 we obtain:

IU 0

Now dividing by P.uo ohsdso h qainwobtain: 
obohsdsotheqainw

1.01.0
IP. 0p o p 3z

Now solving for P.u we obtain:

P. '?
iu 0 0 

(5-16)

And finally substituting this value for P.u into Eq. 5-11we obtain:
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To put this result in a more simple and symmetrical form we

can define:

Z = 1.0 (5-18)

and then extend the summation over platform sets j to include the

unknown platform set u. When this is done we obtain a final

simple form for Pij as follows:

-=j ij (5-19)PiJ E = pijzi j

j=l,u

where

zij =Tk(Wijk) (5-20)

and

Wij k = exp ('jkaik) (5-21)

In order to obtain a valid solution it is only necessary to

find the lowest possible set of nonnegative Lagrange multipliers

jk such that the constraints defined in Eq. 5-5 will be
satisfied. This reduces the problem to a standard problem in

lagrange multiplier optimization for which a wide variety of

iterative methods are available that can be used to converge to
the proper values of the lagrange multipliers.

The Eqs. 5-19, 5-20, and 5-21 have a rather simple

intuitive interpretation. It appears that there is a rather

fundamental quantity PijZij which can be viewed as an
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unnormalized probability. To calculate the actual probabilities

Pi the first step is to calculate the unnormalized probability

P izij and then normalize the result by dividing the summation of

the unnormalized probabilities. The unnormalized probabilities

are obtained simply by multiplying the a priori probabilities by

a series of multiplicative factors Wijk > 1.0 (as shown in

Eq. 5-20). The presence of the lagrange multipliers jk in these

factors simply indicates that each of the mltiplicative factors

is to be independently adjusted to whatever level is required to

meet the corresponding constraint. Thus, the basic solution

methodology involves a relatively straightforward search for the

lowest multiplicative factors Wij k > 1.0 which will satisfy the

specified constraints.

The test program that was developed for the project (which

used rather standard interactive methods to converge to the

appropriate set of multipliers) was found to produce satisfactory

solutions for small problems with a negligible amount of computer

time.

B.6 LAGRANGE MULTIPLIERS AS AN INDICATOR OF SIGNAL IMPORTANCE

In information warfare applications it can be very

important to know which signals are most important in giving away

information. Similarly, it is important to be able to recognize

quickly, new information which is in conflict with previous

observations or previous interpretations of the data.

The lagrange multipliers in the present formulation provide

a very sensitive indicator of the importance or significance of

the individual signals. If a new signal is completely consistent

with previous data, and thus provides no new information, then

the lagrange multiplier for the signal will be zero. If the

signal provides new information which substantially reduces the

ambiguity in the interpretation of the situation, then the

lagrange multiplier for the signal will be quite high. On the

other hand, if a signal provides information which is logically
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inconsistent with previous evidence, then the lagrange

multipliers LQt for the new signal and for the ccnflicting

previous signals will rise toward a maximum or limiting value

which is determined by the confidence level assigned to the

signals. Thus, when a lagrange multiplier approaches this

confidence limit it can provide a warning that the signal is

incompatible with previous data.

The availability of such a quantitative indicator of the

importance of each signal is an important by-product of the

present formulation which seems likely to enhance the usefulness

of the algorithm, particularl in information warfare applications.

B.7 REMAINING ISSUES FOR THEQRETICAL .j _LYSJL

The simplifications used in the foregoing derivation

suggest a number of issues that will require additional

theoretical and analytical research. This section discusses some

of these specific problems that will have to be addressed to

provide the diversity of capabilities required for the analysis

of practical sea surveillance and counter sea surveillance

problems.

B.7.1 AMBIGUOUS LOCALIZATION OF SIGNAL ORIGIN

The first and most obvious problem concerns our simplifying

assumption which treats the a priori probability distribution for

the point of origin of a signal as a rigid constraint on the

posteriori distributions. It seems clear that it would be better

if this could be treated not as a rigid constraint, but rather as

a somewhat flexible preference. For example, if the observed

signal corresponds to an emitter that is already known (from

other evidence) to be present in a particular platform set, it

seems unreasonable to impose a constraint that requires a
predetermined fraction of the emitter to be accounted for in the

probability distributions for other platform sets that
theoretically 3re possible points of origin for the signal.

Several alternative approaches have been identified that could
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provide a reasonable way of representing this information as a
"soft" rather than a rigid constraint. However, considerable

work remains to be done to select a preferred approach and to

develop a satisfactory theoretical justification for the choice.

B.7.2 AMBIGUOUS IDENTIFICATION OF EMITTER OF ORIGIN

A second very important issue concerns the treatment of

suggestive, but not definitive, evidence concerning either the

unique identification of individual emitters or the

identification of a specific emitter type.

The foregoing mathematical formulation uses "confidence of

emitter identification," Skl, as if it is a rigid constraint on

the solution. It seems clear that this is not a satisfactory

approach. For example, suppose we have a 75% "confidence" that a

specific signal was produced by a specific emitter unique to the

carrier Kitty Hawk. But, in addition, we have a 95% confidence

that another signal coming from another part of the ocean is also

associated with an emitter that is unique to the Kitty Hawk.

Obviously, it is inappropriate to impose both constraints on the

posteriori solution. A consistent and systematic way is needed,

therefore, to balance such suggestive evidence concerning the

specific emitter (or emitter type) of origin. The present

prototype version of the ship identity inference system uses a

simple ad hoc method of resolving conflicts between such

incompatible clues, but a systematic method is needed for which

an appropriate theoretical rationale can be provided.

B.7.3 SUGGESTIVE INFORMATION DERIVED FROM PASSIVE SIGNAL
AMPLITUDE

The foregoing mathematical treatment has implicitly assum :

active emitters that can be turned off and on as desired.

Consequently, the absence of a signal has been treated as if

contains little useful information. Although this assumpt:217

correct for most active emitters, it certainly is not ccrre&:

passive emissions such as radar returns, infrared, and : t

signals.
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